接下来,他们向 Alice 和第三个原子发射单个无线电脉冲,同时对 Alice 的位置进行测量并将信息传输到原子「文本消息」。最后,针对 Bob 和中间原子的另一个脉冲同时将消息传输给 Bob 并在那里进行测量,从而完成能量「无中生有」。
他们多次重复这个过程,在每一步都进行多次测量,使他们能够在整个过程中重建三个原子的量子特性。最后,他们计算出 Bob 碳原子的平均能量下降,可知能量被提取并释放到环境中。尽管 Bob 原子总是以基态开始,但还是发生了这种情况。从开始到结束,该协议只用了不超过 37 毫秒。要不是能量从分子的一侧传播到另一侧,通常需要 20 多倍的时间 —— 接近一整秒。Alice 消耗的能量使 Bob 能够解锁其他方式无法获得的能量。
「看到利用目前的技术可以观察到能量的激活,这真是太棒了,」现就职于加州大学伯克利分校的 Rodríguez-Briones 说道。他们在 2022 年 3 月发布的预印版论文《Experimental activation of strong local passive states with quantum information》中描述了量子能量隐形传态的首次演示,该研究已被物理学顶刊《Physical Review Letters》(PRL)接收发表。
在接下来的几天里,他编写并远程执行了这样一个程序。实验证实 Bob 量子比特下降到其基态能量以下。到 1 月 7 日,他已经在预印版论文《First Realization of Quantum Energy Teleportation on Superconducting Quantum Hardware》中发布了他的结果。
在堀田昌宽首次描述能量传送近 15 年后,相隔不到一年的两次简单演示证明了这是可能的。
「实验论文做得很好,」Lloyd 表示。「我有点惊讶于没有人更早做到这一点。」
科幻的梦想
然而,堀田昌宽还没有完全满意。
他称赞这些实验是重要的第一步。但他将它们视为量子模拟,因为其纠缠行为被编程为基态 —— 通过无线电脉冲或通过 IBM 设备中的量子操作实现。他希望人们最终能从一个系统中获取零点能量,该系统的基态自然具有纠缠的特征,就像弥漫在宇宙中的基本量子场一样。